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On the filling of a rotating cylinder with a mixture 
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A rotating tank is filled from the outside with a mixture of particles and fluid. Under 
certain attainable conditions on the times for filling, separation, and spin-up, theory 
implies that the filling process acts like a centripetal separator in which heavy 
particles are actually concentrated at the inward-moving front. Centrifugal settling 
in the interior is counteracted by mass transport in the rotating boundary layers to 
produce this unusual volume-fraction distribution. 

1. Introduction 
The problem considered here is that of a rotating cylindrical container which is 

slowly filled with a dilute mixture of small particles (or droplets) dispersed in an 
incompressible fluid. The flow enters the vessel radially through the sidewall; since 
the filling time is considerably longer than the spin-up time the motion is essentially 
linear and dominated by shear layers. The corresponding motion of a homogeneous 
fluid in this configuration was recently examined by Ungarish & Greenspan (1984) 
(hereinafter referred to as U&G). In the present problem, there is the additional 
physical effect of centrifugal buoyancy, which forces the heavier constituent towards 
the periphery and causes the separation of the phases. 

The primary objective is the determination of the particulate volume fraction a 
when the density of the particles differs only slightly from that of the fluid. For 
definiteness, and unless otherwise stated, the particles are taken to be heavier than 
the fluid. The analysis is based on a mixture model (see Ishii 1975) but before 
proceeding to the development of theory, i t  is worthwhile to describe the general and 
somewhat novel features of the flow. 

The most interesting circumstance is when the separation and filling times are both 
of comparable magnitude and much longer than that for spin-up. The fluid flow is 
then essentially a quasi-steady, annular sourcesink in a rotating cylinder, figures 1 
and 2. The mixture enters through the outer wall, passes into an B vertical shear 
layer where the flow direction is mainly axial, and then moves towards the Ekman 
layers on the top and bottom plates. Subsequently, the fluid is transported radially 
inwards by non-divergent Ekman layers, and then spreads onto the moving front (the 
fluid-air interface) via a vertical shear layer embedded in a weak B layer. The 
flow in the main inviscid-fluid core is that of a potential vortex in the rotating 
coordinate system with zero axial and radial velocity components. However, the 
motion of the particles in the mixture is affected by the centrifugal buoyancy force. 
A heavy particle in the inviscid interior will settle toward the outer wall, but in certain 
circumstances it cannot completely penetrate the sidewall boundary layers. There, 
in the strong vertical shear flow, the particle can be sucked back into an Ekman layer, 
combined with newly entered mixture and transported once again to the frontal 
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FIGURE 1 .  Schematic sections of the rotating container, filling through 

the outer wall with a mixture of volume fraction a,. 

FIGURE 2. Description of the flow regions. 



Filling of a rotating cylinder with a mixture 119 

region. I n  this way, separation in the interior can actually be counteracted by the 
flux in the boundary layers to produce a volcme-fraction distribution in which the 
heavy particles are more concentrated at the centre of the bowl than at the periphery. 
Thus the effect of centrifugal buoyancy can be successfully opposed during filling, 
which is a non-intuitive, perhaps surprising, prediction that provides a novel and 
stringent test of mixture theory. 

2. Formulation 
An annulus of height H*, inner and outer radii r:, r& rotates with angular velocity 

Q* about its symmetry axis, figure 1 (where an asterisk denotes dimensional 
variables). For simplicity, it is assumed that the tank is empty initially; the more 
general case in which there is at the start a layer of mixture at the outer wall can 
be treated similarly. At time zero, a dilute mixture with a volume fraction a, of 
dispersed particles, each of radius a*, is made to flow slowly into the container 
through the sidewall at a constant, uniform volume rate -&*, with the azimuthal 
velocity of the boundary. 

It is convenient to scale the length by r;, velocity by V* = &*/(21t&rd2), density 
by pz and time by [ ( I & / H )  V*/r:]-', where E = ,$/& Q*r;S2 is the Ekman number 
and & the viscosity of the fluid phase. (Subscripts C and D denote variables of the 
continuous and dispersed phases.) The dimensionless azimuthal velocity and the 
filling time are then of order unity; the dimensionless radial velocity of the entering 
fluid is U*/  V* = &*/(2arz H* V*) = I&/H,  and that of the front is also of the same 
order of magnitude. I n  dimensionless form & = 2 n B ,  which is a suitably small flux. 
The representative Rossby number is 

In a rotating coordinate system, the dimensionless equations of motion for the 
mass-averaged variables of the mixture model, Ishii (1975), Ungarish & Greenspan 
(1984), are as follows : 

mixture volume conservation : 

mixture momentum conservation : 

volume conservation of dispersed phase : 

1 - 2u + €a2 I& au 
qR)*vu  = -a( l  - a ) v * q R .  --+(,+ H at 1 +€U (2.4) 

Here 
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is the relative velocity, and P the reduced pressure (which includes that part of the 
centrifugal force that is expressible as a gradient). The second term on the right of 
the momentum equation represents the effective buoyancy force on the heavy 
dispersed particles. The next term models the averaged viscous stress, assumed here 
to be that of a Newtonian fluid of viscosity &. The last term arises from the ‘diffusion ’ 
of momentum induced by the relative motion between the phases. 

The system of governing equations is closed here by a simple constitutive law 

qg = epQ*r*P, (2.5) 

where 

is the (modified) Taylor number of the dispersed particle. This expression for the 
relative velocity, which is Stokes law for settling in a centrifugal force field, can be 
justified for small values of /3, Ro and a, to which the subsequent analysis is confined. 
It is emphasized, however, that  the use of (2 .5)  in the entire flow field is a critical 
step of the present analysis. Inertial effects (Saffman 1965) and the influence of the 
wall affect the force balance expressed by this equation in certain regions - but to  an 
as yet unknown extent. I n  this respect, the comparison of theory with experiment 
will be informative. 

Since the dimensionless radial velocity of the entering fluid is O(l&/H) ,  the 
convenient dimensionless form of (2 .5)  is 

qR = K -  rr, 
H 

where K = $H/(Z&Ro). 

Note that K is the ratio of the filling time to that for separation. In  fact, for K > 1, 
when filling is a slow process compared with settling, the particles are separated at 
once upon entering the container; for K 4 1 the container is filled long before 
significant separation takes place. Subsequent analysis treats only the interesting case 

For later use, note that, with the foregoing approximations, the kinematic 
K <  1. 

relationship 
q D  = q + ( l - a a ) ( l + € a ) - l q , ,  

becomes 

The solution of the complete system of equations is, of course, a formidable task 
and further simplifications are necessary for analytical progress. As previously 
indicated, Ro and E are assumed small, which allows the elimination of the nonlinear 
terms in the momentum equation and the employment of boundary-layer techniques. 
Moreover, let Ea < Ro, an assumption discussed further below, in which case the 
equations for the mixture reduce to 

v . q  = 0, (2.8) 

(2.9) 

These are identical to the equations of the linear theory for homogeneous rotating 
fluids. Consequently, in this limit, the equations for the motion of the mixture 
decouple from that governing the volume fraction. Moreover, to this order of 

2k x q = - V P - E v  x (V x q ) .  



Filling of a rotating cylinder with a mixture 121 

approximation, the velocity q of the mixture is the same as the single-phase flow 
solution discussed in U&G. (Although the linear solution is strictly valid for Ro < a, 
i t  accurately describes the flow field beyond this range.) The task now is to  calculate 
the volume fraction a. 

The important mechanisms are the Jilling throughput and the buoyancy separation 
of the mixture. The typical azimuthal velocity perturbations from solid-body 
rotation induced by each of these processes, are V: = & * / 2 ~ l & r $ ~  and V;S = €a, 52*rz 
respectively. Since subsequent analysis concerns flows in which the former effect is 
dominant, V;S 6 V;;  this implies € a O  < Ro and gives a physical interpretation of the 
assumed restriction. This should limit the validity of the theory to  very small values 
of a, i.e. to dilute suspensions, but, since in most cases of interest E itself is small, the 
restriction on a is actually not so severe. 

The substitution of (2.6) for qR in (2.4) gives, for small a, 

(2.10) 

where u and w are the radial and axial components of q.  This equation must now 
be solved in the various regions of the flow field. 

3. Flow regimes 
In  the inviscid core q = - r-lo, u and ware both zero (with an error O(&)).  Equation 

aa aa 
ar 

(2.10) then reduces to  

whose solution a = a(r, t )  is 

K a ,  - at +KT- = -2  

a(r, t )  r2 = a(y )  r2(y)  (3.2) 

(3.3) 
on 

Here a(y) is the volume fraction prescribed at point r ( y ) ,  z(y) at time t = y.  The radial 
and axial velocities in the inviscid core of the dispersed phase are, by (2.7), 

r = r ( y )  exp [ ~ ( t - y ) ] ,  z = 4 y ) .  

so that (3.3) also describes the trajectory of a dispersed particle with the appropriate 
initial position. 

Within the a source layer a t  r = 1 ,  the radial and axial components of q are 

where 

E: = -- e-6, 
H 

The velocity of the dispersed phase is then, by (2.7), 

(3.5) 

(3.7) 

WD = w. 
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FIGURE 3. The meridional motion in the & source region : ---, 
mixture streamlines; -, partial paths. 

Equation (3.8) implies that, for K < 1 ,  uD = 0 in the J!& layer at the position 

r = r1 = l+($HZ$):lnK. 

Thus, the particles entering with the mixture at r = 1 clearly move directly on into 
the Ekman layers in the interval r > r l .  The dispersed particles, which are driven from 
the inviscid core towards the periphery by the buoyancy force, cannot reach the outer 
wall. At r = rl, these particles acquire a considerable axial velocity (cf. (3.9) and (3.6)) 
and are sucked into the endwall Ekman layers, a process that radically affects the 
volume fraction a in the interior. The trajectories of the mixture and dispersed-phase 
particles are sketched in figures 3 and 4. 

The substitution of (3.5) and (3.6) into (2.10) yields: 

(3.10) 

For small E, the dominance of the last term on the left-hand side implies that  
a = const. along all pathlines in the source layer. In  particular for rl < r < 1, the 
Ekman layers are fed by entering mixture a t  the imposed volume fraction a,,. 
However, the Ekman layers supporting the & layer in the region r < rl receive 
particles arriving from the inviscid core. The two streams are now assumed to  
combine in a mixing region near each endwall, 1 - r = O(E$, as sketched in figure 4. 
We anticipate that the mixing in this region of the Ekman layers will control the 
distribution of the volume fraction elsewhere. The merging of the and Z$ layers 
a t  the outer wall produces a very complicated flow in which there are. closed regions 
of recirculation as shown in figure 5. Regions of closed circulation might be expected 
to have a lower or even zero particle concentration, but this would imply a strati- 
fication of the effective viscosity, which is unstable in parallel flows, Yih (1967). 
Moreover, the buoyancy force would also contribute to  the destabilization of the 
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FIGURE 5. Streamlines in the.& x @ corner of a linear homogeneous fluid source at r = 1. The values 
on the lines are (1 - $), where $ = - E-b  ji u dz, and the volumetric rate transported by one Ekman 
layer is 2x&. 
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delicate flow field in merging, rotational boundary layers. For these reasons some sort 
of flow instability must be anticipated that results in the instantaneous mixing of 
the fluid in the Ekman layers around r = rl. The mixture that leaves this region is 
therefore assumed to have an homogenized volume fraction (u). The value of (u) 
is obtained from the conservation law for particle volume. The volume flux of 
particles arriving from the inner core applied to the annulus a t  r = r l  x 1 is, by (3.4), 

&D, = 27Cr,HC~(l)a(1, t )  % 2XBKZ(1, t ) ,  (3.11) 

where the additional assumption is made (to be rationalized later) that  Z does not 
depend on z. Therefore 

&Dl + Q.0 = (a ( f ) )  (3.12) 

and since in the dilute limit OD, = o(&) it follows that 

(o l ( t )> = o l , + K E ( 1 ,  t ) .  (3.13) 

The volume fraction (a), which is obviously larger than the entry value a,, is fed 
into the non-divergent Ekman layers bounding the inviscid core. There 

(3.14) 
1 
r 

w = 0, 

where 5 is the axial distance from the boundary stretched by E-4. 

u = -- e-5 sing, 

Combining (3.14) and (2.10) gives 

(3.15) 

indicating that a = const. along pathlines that are essentially parallel and horizontal. 
In  view of the mixing postulated in the feed region r = 1 ,  and the possibility of other 
instabilities in the recirculations of the Ekman layer due to  buoyancy, viscous and 
inertial effects, we take 

01 = (a@)) (3.16) 

everywhere in the boundary layer. In other words, the typical radial flow in the 
Ekman layers is very vast compared to I qR I, and the short time spent by a mixture 
particle in this region is insufficient for any significant separation to have occurred. 

The frontal region consists of a moving l& shear layer at the front, r = r F ( t ) ;  its 
location is given by 

rk = 1-2t. (3.17) 

This layer receives an O ( G )  volume flux from the Ekman layer. The detailed exami- 
nation of the complicated dispersed-phase motion in this region is not attempted; 
instead, a global analysis is adopted. 

The O ( a )  axial velocity in the front layer is relatively large, so that particles should 
spread in a manner that produces a homogeneous volume fraction u(rF,  t ) .  Local 
instabilities are also expected to assist in this process. 

Since the particulate and fluid volume in all the thin boundary layers is small, 
global volume conservation of the dispersed phase implies : 

2nH* E ( r * ,  t*) r* dr* = a, &*t*, (3.18) 
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or, in the dimensionless form, 

(3 .19)  

The time derivative of this equation and the use of (3.17) and (3 .1)  give 

Z(rF, t )  [ 1 + ~ r k ( t ) ]  - K&( 1, t )  = a,,. (3.20) 

Since by (3.13) ( a ( t ) )  = a , + ~ & ( l ,  t ) ,  this implies 

(3.21) 

Thus the volume fraction is much reduced when mixture enters the inviscid core 
from the front via the boundary layers. This effect can be attributed to the motion 
of the front towards the centre while particles tend to move in the opposite direction. 

4. Volume-fraction distribution 
The volume fraction in the core E(r, t ) ,  can be obtained by appropriately matching 

the solutions in the different flow regions discussed in the last section. A straightforward 
discrete method of computation is to follow the motion of a particle in a container 
which initially has a thin layer of fluid a t  the outer wall b < r < 1. The particle at 
r = 6 reaches r = rl = 1 in time At = (In b)/K (cf. (3 .3) )  from where, in a negligible time 
interval, i t  is transported to  the front whose position is now r&(At) = b2-2At. The 
journey towards the periphery is repeated, and so on. The value of a on any point 
of this trajectory (and, in particular, at rl and TF) can be calculated via ( 3 . 2 ) ,  (3 .13) ,  
(3 .16)  and (3 .20) .  The case of an initially empty container is recovered in the limit 
b+ 1 .  

The analytical approach is t o  solve (3 .1)  in the domain rF(t) < r < 1 subject to  the 
constraint (3 .20) .  (The container is taken to  be initially empty, rF(O) = 1 . )  Note that 
this domain does not include the shear layers. 

The general solution of (3 .1)  is 

01 
a(r, t )  = AG(r2e--2r(t), (4 .1)  r2 

where G is an arbitrary function that must satisfy the above mentioned constraint. 
This yields the functional equation for G: 

(4 .2)  

Equation (4 .2)  can be solved by several methods. Numerical solutions are displayed 

G(qe"(V-')) (1 + ~ q ) - ~ q G ( e ~ ( v - l ) )  = q ,  

where q = r; = 1 - 2t. 

in figure 6 .  A Taylor-series expansion in powers of (1 - q )  yields, for K # -$, 

G(q) = 1 - a , ( l - q ) - ~ ~ a , a , ( 4 + 3 ~ )  ( l - ~ ) ~  

- i K 2 a 2  a4[3a3( 1 + K )  ( 1 + 3K)' - (9 -k 4K)] ( 1 - 7), - . . . , (4.3) 

where U, = [(I + K ) n - K n ] - ' ,  

The number of terms that must be used may be gauged from the strict condition 
G(0) = 0. 

5-2 
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FIGURE 6. The function G ( q ) ,  numerical calculation via a recursion formula. 

A perturbation series valid for small K gives similar results and a simple formula for 

(4.4) 
the volume fraction is u(r, t ) /u,  2: 1 + 2 ~ ( 1 - r ~ - t ) .  

The most accurate results approximated for small K are summarized as follows : 

a 
r2 

in the core Z, = G(r2( 1 - 2 K t ) ) ,  

so that by (4.3) 

and from (3.20) 

in the Ekman layer, (3.13) implies 

in the sidewall layer (3.16) yields 
a = a. for r > r l .  

( 4 . 5 ~ )  

(4.5b) 

(4.7) 

The accuracy of (4.5a, b) has been verified by comparison with numerical solutions, 
figure 7. 

The most striking result is that the volume fraction is largest at the front and 
decreases towards the outer wall, to a value a(1, t )  that is lower than that of the 
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FIQURE 7. Behaviour of the reduced volume fraction [(a/a,)- 13 us time at: (a),  r = r F ( t ) ;  
( b ) ,  r = rl x 1 .  -, numerical solution; ---, approximations ( 4 . 5 ~ ~ )  and ( 4 3 ) .  

entering fluid. As filling proceeds, the concentration of particles at the front as well 
as the deficit at  the wall both increase, a transient state that is in complete opposition 
to the centrifugal buoyancy force. 

If the particles are lighter than the fluid, an analogous situation develops in which 
the largest particle concentration is a t  the entry wall while the lowest is at the moving 
front. In this case, (4.4) holds with - K  substituted for K at least for small K .  However, 
the explanation of this concentration profile is slightly different because there is now 
no important mixing zone in the sidewall boundary layer. The radial velocity of 
particles entering the tank remains positive in the vertical shear layer, and most of 
them proceed on directly into the interior. Fewer particles enter the Ekman layer, 
which then transports a mixture with a low concentration of dispersed matter to the 
front. Light particles pile up a t  the entry wall because of the small settling velocity 
while purer fluid is moved inwards by the Ekmen layers to fill the container. 

The preceding analysis is valid during the filling process, t < t F ,  where tF  = i( 1 - r:).  
Once filling is completed, a spin-down process takes place in which columns of a 
mixture undergo an O(Ro) radially outward displacement. The volume fraction in the 
interior, however, remains unaffected since the separation time is large compared to 
the spin-up interval. This stage is followed by separation of the mixture, which is 
essentially rotating rigidly. The governing equation is 

subject to the initial condition a, (r) = a(r, t F )  obtained from the filling solution. It 
follows that: a = a, (r,)  e-2Kt on r = r* eKt for t > t F .  A sediment layer develops on 
the outer wall and a kinematic shock, whose locus is r = rI eKt, separates between the 
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purified fluid in the central region and the separating bulk of mixture. Except for 
the variable initial volume fraction, the radial flow is much like that discussed by 
Greenspan (1983). 
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